欧宝体育

欧宝体育安全科学与应急管理学院科研团队发表国际高水平研究成果

发布:欧宝体育 来源:欧宝体育

大字号

  近(jin)日,欧宝体育安全科学(xue)与应急管(guan)理学(xue)院刘(liu)燕武副教授、涂燕副教授和管(guan)理学(xue)院张忠(zhong)祯(zhen)教授合作,以欧宝体育作为第一作者(zhe)和通讯作者(zhe)单位在管(guan)理科学(xue)国际(ji)顶级(ji)期(qi)刊(kan)《OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE》发(fa)表(biao)了题为“The row pivoting method for linear programming”的最新(xin)研究成果。


  该(gai)研(yan)究成(cheng)果有以下三个创(chuang)(chuang)(chuang)新(xin)性(xing)(xing)贡(gong)献: (1)实(shi)(shi)现(xian)了线(xian)性(xing)(xing)规(gui)(gui)划(hua)(hua)单纯形法创(chuang)(chuang)(chuang)始人Dantzig教授(shou)(shou)最初(chu)尝(chang)试用(yong)行几(ji)何(he)(he)视角求解(jie)线(xian)性(xing)(xing)规(gui)(gui)划(hua)(hua)问题(ti)的设想。Dantzig教授(shou)(shou)最初(chu)尝(chang)试用(yong)行几(ji)何(he)(he)视角求解(jie)线(xian)性(xing)(xing)规(gui)(gui)划(hua)(hua)问题(ti),在经过反复思考认为无法实(shi)(shi)现(xian)后才采用(yong)列几(ji)何(he)(he)观点求解(jie)线(xian)性(xing)(xing)规(gui)(gui)划(hua)(hua)问题(ti),本(ben)论文则证(zheng)明完全可以从行几(ji)何(he)(he)观点求解(jie)线(xian)性(xing)(xing)规(gui)(gui)划(hua)(hua)问题(ti)。(2)为线(xian)性(xing)(xing)规(gui)(gui)划(hua)(hua)单纯形法创(chuang)(chuang)(chuang)始人Dantzig教授提出的“求(qiu)(qiu)解(jie)线性(xing)(xing)(xing)规划问(wen)题(ti)本(ben)质(zhi)上(shang)就(jiu)是求(qiu)(qiu)解(jie)线性(xing)(xing)(xing)不(bu)(bu)等(deng)(deng)(deng)(deng)式(shi)(shi)组(zu)”的哲学(xue)思考提供了(le)有(you)效(xiao)的实现途(tu)径。行旋(xuan)转(zhuan)算法(fa)(fa)本(ben)质(zhi)上(shang)是求(qiu)(qiu)解(jie)线性(xing)(xing)(xing)不(bu)(bu)等(deng)(deng)(deng)(deng)式(shi)(shi)组(zu)的一种(zhong)直接、自然(ran)、有(you)效(xiao)的算法(fa)(fa),从行旋(xuan)转(zhuan)算法(fa)(fa)视(shi)角看: 求(qiu)(qiu)解(jie)线性(xing)(xing)(xing)规划问(wen)题(ti)本(ben)质(zhi)上(shang)就(jiu)是在保(bao)证最(zui)优性(xing)(xing)(xing)条(tiao)件(jian)成立的前提下(xia)求(qiu)(qiu)解(jie)约束条(tiao)件(jian)对(dui)应的线性(xing)(xing)(xing)不(bu)(bu)等(deng)(deng)(deng)(deng)式(shi)(shi)组(zu),从而(er)实现了(le)从求(qiu)(qiu)解(jie)线性(xing)(xing)(xing)不(bu)(bu)等(deng)(deng)(deng)(deng)式(shi)(shi)组(zu)的角度出发求(qiu)(qiu)解(jie)线性(xing)(xing)(xing)规划问(wen)题(ti)的设想。(3)线性(xing)(xing)(xing)不(bu)(bu)等(deng)(deng)(deng)(deng)式(shi)(shi)组(zu)是比线性(xing)(xing)(xing)方程组(zu)更为基础的问(wen)题(ti),许(xu)多(duo)问(wen)题(ti)本(ben)质(zhi)上(shang)就(jiu)是求(qiu)(qiu)解(jie)线性(xing)(xing)(xing)不(bu)(bu)等(deng)(deng)(deng)(deng)式(shi)(shi)组(zu),因此(ci)线性(xing)(xing)(xing)不(bu)(bu)等(deng)(deng)(deng)(deng)式(shi)(shi)组(zu)的行旋(xuan)转(zhuan)算法(fa)(fa)具有(you)很好的方法(fa)(fa)论意义,能(neng)够作为基础算法(fa)(fa)求(qiu)(qiu)解(jie)很多(duo)不(bu)(bu)同(tong)领域的问(wen)题(ti),也(ye)常(chang)常(chang)能(neng)够更好地揭示出不(bu)(bu)同(tong)领域问(wen)题(ti)的共同(tong)本(ben)质(zhi)。


  该(gai)研究得到(dao)了诺贝尔经济(ji)学(xue)奖获得者Harry Markowitz教(jiao)授的高度评价(jia)和认可,Harry Markowitz教授致信该团(tuan)队: “You are doing competent and creative work in an area of great importance.”

  《OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE》,SCI/SSCI双检索, 中科院一(yi)区TOPABS三(san)星级,运(yun)筹学与管(guan)理科(ke)学类国际期刊影(ying)响因子排名(ming)前(qian)三(san), 2020年影(ying)响因子/JCR分(fen)区: 5.324/Q1。

  来源:欧宝体育

  文章链接:

欧宝体育